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OUTLINE

Introduction

Carrier capture/emission by oxide defects
Computational models

Defect parameter extraction from experimental data
Establishing defect models

Defect reactions

N o Uk wiheE

Summary and Outlook
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Energy levels Mobility Target
Atomic structure ” Effective mass > Capture and 9

Axpe characteristics
Band structure Quantum pots. Emission rates Phenom. Mods
TB parameters Exp. factors ’ ’

| vl
ﬂirst Principles Quantum Monte Carlo Drift Diffusion Compact models

Transport !
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Characterization 2 Characterization 3

To develop multi-scale modelling technology, supported by comprehensive
experimental characterization techniques, to study the degradation and

reliability of next generation CMOS devices MO nnnED
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Electronic devices are complex systems of interfaces

Il Generic atomistic models for interfaces

Il Relation between w110,
defects structure and
interface morphology

Si MeO, Me

Il Electronic structure of the electron and hole traps
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Goal: Linking atomistic and device modelling

Atomistic Average
10°E eo—ae Continously Doped Device

10-9 1 1 1
0 0.2 0.4 0.6 0.8
V.. [V]

dThree dimensional ~ UStatistical A Quantum corrections
Input from atomistic modeling

— ODielectric constant variations.
(o @ (1Band gap variations.

QInterface states.

L Defect states in the dielectric.
O e scattering potentials

L Granularity models

Si  MeO, Me

MORNDREN
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RANDOM TELEGRAPH NOISE
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At constant bias conditions,
oxide defects are charged by
channel carriers and subsequently
discharged back into the channel

A wide range of time constants
is controlled by a nonradiative
multiphonon emission process

The system is in dynamic
equilibrium, manifested by low-
frequency noise or Random
Telegraph Noise (RTN) in small
devices
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(NEGATIVE) BIAS TEMPERATURE INSTABILITY
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l » Following the perturbation by
| gate | NBTI stress, excess charged
- @93 o 5 o oxide defects gradually
| +':‘ | discharge and the system is
y' N A 'Q returning to the dynamic
g . equilibrium of (a), resulting in long

NBTI transients

rT=125°C

 NBTI in downscaled devices can
be treated as a stochastic
ensemble of individual defects,
o= 1900's Poisson-distributed in number per
device, with each defect described
by its impact on the channel
conduction characterized by its
capture and emission times

Vin(t) - <Vipe> (MV)

102 102 10 100 10" 1072 103
lime (s)

AV,

B. Kaczer et al. IRPS10
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PERCOLATION PATH

Interface trap  Fixed charge

i f Remote
Remote _— > \ Gate _[ VW 7Plasmon

Impurity v Oxide é

Fr Y

Source () /e YW\ Drain

/9 Substrate

\7 1
Impurity lons Electron-Electron
Interactions

Potential distribution in a 3-D volume
with random discrete dopants. The
carriers are scattered by Coulombic
potential of the dopants.

Carrier scattering centres in CMOS devices

E. A. Towie et al. Semicond. Sci. Techn. 26, 055008 C. Alexander et al., Sol. St El. 49, 733 (2005)

(2011)
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TIME-DEPENDENT DEFECT SPECTROSCOPY
Negative Bias Temperature Instability

» Time dependent defect spectroscopy: Small area devices in which
recovery after stress proceeds in discrete steps

Alexander Shluger

» Each discrete step due to emission of single trapped charge carrier
» Individual defects characterized by step height
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REVERSE-ENGINEERING DEFECT MODELS

Alexander Shluger

Il Model extraction
Il Candidate selection
Il Candidate evaluation

Il Rate calculation

!

Defect elimination
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Calculations performed on > 300 models of amorphous
silica with cells containing 216 atoms

Amorphous silica generated using empirical force-field
(ReaxFF) and molecular dynamics to S|mulate heating and

...............................

N
1 : '::
E(QIQN)Z( 0+7C: qi + 2Jfr)q,!)+2qqu [ .............................

1<J

Total structure factor of Si O, from ReaxFF
.

) Wi
,=0\ o LKA o
= ‘@%.%: R TS0
= ;
P

Ly
A
I

v . -‘_ 2 R S
N o = ‘v .:.— J.
’/ s‘\&.ﬂ‘ o L,
J . “ | el “'— > -U. e
- /”'\ ~'l":' e ‘: "}:’ I‘i"'.{.

S \.“9‘ *; ‘:‘ ‘ ¥
j"q“t A‘i/\'

“"‘ 4‘-} £3
\.-? '."0{

Rz
0l
_ 4"4@*
=, ) )

{

e
SN
. ‘

.“‘
l” ).




BEssoere

2015

Alexander Shluger

TRAP ASSISTED TUNNELLING
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Identifying atomistic oxide trap responsible for NBTI:
06‘\. /%‘5’/'.
»  Multi-state Multi-phonon model (2;30 (2, %@
T Ty Tyl T [ 1) & / \\ x%@
¥ . _
FoTE Ty Ty - t2
T Ty + Ty (14 T / Tp)) Y @
7 Tep= T+ Ty (14 Ty / 1)) %, N b«&‘*c’
‘%?f& GC’OQ
&
»  Barrier-hopping transitions: Top = v exp[EaB/KBT] 2

> Vibronic transitions: 7 = 2n/h [<OIV'|®>[? [<ngn;,>[* 6(E—E;,)
»  Summing over all vibrational states: Lineshape function
» VO =avg X |<<+F|01>>? §(E,— E, — E,,— E)

TeGrasser ét'al., IEEE TRANSACTIONS ON ELECTRON DEVICES 2011 @ .n.. = R— R_r—‘
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ENERGY LANDSCAPE: HYPOTHETICAL
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ENERGY LANDSCAPE: EXTRACTED
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DEFECT MODELS

a)
Atomic configuration and spin density of
) the two hydrogen induced defect
configurations and their precursor:
5 — 5 " a) An unperturbed SiO, tetrahedron;

b) The [SiO,/H]° center

c) The hydroxyl E” center

et
-

A-M. El Sayed et al. Phys. Rev. B. 92, 014107 (2015)
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DEFECT MODELS

a) Atomic structure of the oxygen
vacancy which is the precursor
to the hydrogen bridge

b) Atomic structure and spin density
of the hydrogen bridge

A-M. El Sayed et al. Phys. Rev. B. 92, 014107 (2015)
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DISTRIBUTION OF DEFECT LEVELS

a)

, Histogram of the one-electron levels
Hydroxyl E

of defect configurations of:
a) the hydroxyl E’ center,
b) the hydrogen bridge defect

|
~J

b)
Hydrogen

] ] I
wh (@)}

I
Energy / eV

The area in the histograms colored
dark red show occupied states while
the area of the histograms colored
blue show the unoccupied

Si 1 states.

1 1 1
2 W
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A-M. El Sayed et al. Phys. Rev. B. 92, 014107 (2015)
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HYDROGEN REACTIONS

+ HO + HO

= 1.0 eV AE*= 0 eV
‘}5 ‘%’ > %D %C%
\ ) y‘JV + HX\_AE*= 0.7 eV
AE*= 1.7 eV r
E r AE*= 0.2 eV
(a} | i | | e .ZC%

HO can break strained Si — O bonds

j Hydroxyl E’ centre is formed at sites where Si — O bond is > 1.65 A

P.S_"r ) 1.6 1 65-

15 gténsgznrﬁtllggr 2u15 21/26 M n nD QED




I ESSCIRC
Alexander Shluger

ESSDERC
2015
HOLE TRAPPING AFTER DEFECT ACTIVATION
O-;Si' H\o_Si + ht —— OTSi\_OE_Si

Hole can be trapped on the defect state ~ 2
3.5 eV above SiO, VB

Two configurations are possible. Si-O bond
can reform and proton is bound to bridging O

Energy / eV

A-M. El-Sayed et al. Microel. Eng. 147, 141 (2015)
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+ . H N H
-XO Siwg — _;D S{""O No—g] T ;’O O=Si "No__g;j
Si O Si 0 Si O
= | : t
: - A metastable state in the neutral charge state
& for the puckered configurations where an
2 — 1 electron is trapped on a back-projected O,Si
- *\ \ * The barrier from the back-projected
. , configuration to the ground state is <1.1 eV>
sl \ (0.3 — 1.6 eV) while the back-projected
r ; , configuration is higher in energy by <0.7 eV>
. L (0.2-1.6eV)
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HYDROXYL E° CENTRE: SUMMARY
1

1' 2 2|

O\ ’ Si\ (I) (I) (l)
O=Si" ~ . r H 4 +
O—Si O Si., ~ . O Si Si
Si o) OO OO

JYI\ M\

0.4-0.9eV <1.8eV>
AE%+~ 0.0 - 0.8 eV AE+ <1.08 eV>

18 September, 2015 24 /26 _n_n_ Q RD n

IT
I




I ESSCIRC
ESSDERC

2015

Alexander Shluger

HYDROXYL E° CENTRE: RATES
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Calculated defect parameters give good agreement with the capture and
emission rate dependence on voltage and temperature
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SUMMARY AND OUTLOOK

Developed a multi-scale methodology for determining defects in
the gate oxide and interface layer responsible for fixed charge
and BTI

Multi-state Multi-phonon model is used to calculate capture and
emission events in Si/SiO, devices linked to ab initio calculations

H generates defect states in a-SiO, which are resonant with Si CB

H used in device manufacturing processes to passivate
electrically active defects can also activate defects

Similar processes explain reliability issues in high-k stacks
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