

VARIABILITY SIMULATION WITHIN SUPERTHEME

Covering variability from unit process up to circuit level for mixed-signal circuits

Conference Sponsors:

OUTLINE

- 1. Introduction: Multi-hierarchical simulation strategy for variability
- 2. Description of benchmarks and results
 - 1. System Level
 - 2. Circuit Level
 - 3. Circuit Element Level
 - 4. Process Level
- 3. Conclusions and Outlook

INTRODUCTION: MULTI-HIERARCHICAL SIMULATION STRATEGY FOR VARIABILITY

18 September, 2015

FROM EQUIPMENT TO DESIGN

- Use existing frameworks (especially HIESPANIA and MODERN) to finalize "bridge" from Equipment to Design
- Take HPA(high performance analog) parameters as benchmarks to assess environment built up during project

Page 5

SUPERTHEME WORKPLAN CONTEXT

DESCRIPTION OF BENCHMARKS AND RESULTS

18 September, 2015

6/33

STRUCTURE OF BENCHMARK

VARIABILITY ON SYSTEM LEVEL

VARIABILITY SOURCES

Label	Benchmark	Expected output	Relevant simulation features before device simulation	 Selection of benchmark components Covers broad range of analog design components Good balance btw. relevance and complexity Representative demonstrators for other analog
B1	Electrical performance and reliability of Through Silicon Vias (TSVs)	Variability of R/C and max. current density	Shape of TSV etch / shape of isolation deposition / shape of conductor deposition / electrical conductor properties	
B2	Electrical performance of polycrystalline silicon resistors	Variability and matching of sheet resistance	Polysilicon morphology (grain size/grain shape/resistor shape) / doping distribution incl. segregation	
В3	Electrical performance of junction diodes	Variability of blocking voltage and optical sensitivity	Doping distribution within device / contacts position and shape	
B4	Optical performance of dielectric stacks	Variability and roughness of stack layers	Layer roughness / layer thickness / layer composition	
				applications

© ams AG 2015 Page 10

VARIABILITY ON CIRCUIT LEVEL

18 September, 2015

11/33

IP-BLOCK BENCHMARK D1 AND D2 Motivation and Goals

- Simulation of benchmark SoC circuit and comparison with measurement data
 - B1 B4 as well as D1 and D2
- Use of SUPERTHEME results in circuit design
 - Transfer of variability information from process variations and atomic-level random fluctuations to higher levels of abstraction
 - Digital design: standard cells
 - Analog design: analog sub-blocks
- Model requirements
 - Gaussian and non-Gaussian distributions
 - Arbitrary correlations

• Behavioral model $V_{ref}^{*} = A_{1} + A_{2}V_{dd}^{*} + A_{3}T^{*} + A_{4}(T^{*})^{2^{*}} + A_{5}I_{ref}^{*} + A_{6}V_{dd}^{*}T^{*}$ $I_{dd}^{*} = A_{7} + A_{8}V_{dd}^{*} + A_{9}T^{*} + A_{10}(T^{*})^{2}$ with $V_{ref}^{*} = \frac{V_{ref} - V_{ref,0}}{V_{ref,0}}, V_{dd}^{*} = \frac{V_{dd} - V_{dd,0}}{V_{dd,0}}, T^{*} = \frac{T - T_{0}}{T_{0}}, I_{ref}^{*} = \frac{I_{ref} - I_{ref,0}}{I_{ref,0}},$ $I_{dd}^{*} = \frac{I_{dd} - I_{dd,0}^{*}}{I_{dd,0}}$

D1: BANDGAP VOLTAGE REFERENCE Variation-Aware Behavioral Model

- Model calibration: coefficients A₁...A₁₀ determined from circuit simulations varying V_{dd}, T, and I_{ref}
- Variation-aware model characterization: repetition of model calibration for MC samples of process parameters
- Variation-aware behavioral model: 10-dimensional random variable A

D1: BANDGAP VOLTAGE REFERENCE Validation

- Comparison of circuit simulations and Verilog-A model evaluations for various combinations of V_{dd}, T, and I_{ref}
 - No significant differences between circuit representations
 - No significant differences between bandgap instances
 - 4X speed-up with Verilog-A model (7.2s instead of 33s for 500 samples)

D1: BANDGAP VOLTAGE REFERENCE Measurements vs Simulations

• Comparison of ams measurement results and simulations

- 0.5% mean shift
- Standard deviations practically identical

Page 17

VARIABILITY ON CIRCUIT ELEMENT LEVEL

18 September, 2015

18/33

BENCHMARK B1 TSV processing

TSV resistance variation modelled vs. oxide and tungsten thickness variability observed in TEM images.

BENCHMARK B2 Polycrystalline resistor

BENCHMARK B2 Polycrystalline resistor

- Further replace connection nodes at grain faces by additional resistor rGB
- Model rG with single crystal properties and rGB with amorphous material properties (Mott formalism, Khondker Model)
- Comparison to data collected on shortloops

BENCHMARK B3 Photodiode & Reference diode Responses Variability Simulation surface Analysis level sources modelling **CD** variation Comparison to Synopsys TCAD BV Implantation online Process, device Capacitance . condition variation measurement of **Optical TMM simulation Optical responsivity Oxide thicknesses** BV, C Breakdown voltage histogram of Photodiode Normal 0 Mean 23.71 StDev 0.3103 600 N 9058 0.5 500 Y [um] 400 Frequen 300 200 1.5 100 , 11 2 0 22.5 22.8 23.1 23.4 23.7 24.0 24.3 24.6

Б

X [um]

5

© ams AG 2015 Page 22

BV (V)

BENCHMARK B4

UV/IR blocking filter + Photodiode

- 1. Dielectric thickness vs. transmission (1D TMM simulation with Mathematica)
- 2. Filter stack equipment simulation (DEP3D)
- 3. Filter + photodiode simulation (1D TMM simulations with TCAD)
- 4. Process variability: CD, overlay, implant dose/energy,Oxide thickness, substrate, epi-thickness
- 5. Investigation:
 Photodiode: "Process variability" vs "Responsivity, Blocking voltage"
 - Filter + photodiode: responsivity

VARIABILITY ON PROCESS LEVEL

18 September, 2015

25/33

VARIABILITY GENERAL APPROACH

Relation between variability sources and physical parameters of interest

Final result will provide R, C, stress function of equipment/process parameters

26 / 33

© ams AG 2015 Page 26

VARIABILITY GENERAL APPROACH Simulation loop up to scallops

TSV ELECTRICAL CIRCUIT

- TSV can be described as a RCL circuit (including S-parameters in a quadripole model)
- Typical values in the GHz frequency range: LTSV=12pH, RTSV=0.35Ohm, CTSV=3.4pF
- Resistance and Capacitance can be measured but inductance is impossible

RESULTS

- Pareto graph of relevant equipment parameters on resistance and capacitance response
- Resistance and capacitance are very sensitive to the second stage etch-dep cycle (Large scallops cycle)
- Morphological variations (scallops width and height) **do not generate** large R,C, L and stress variations. Therefore, variations on TSV electrical and mechanical properties must have another source. (e.g. oxide and tungsten deposition)

BENCHMARK B4

- Variability of interference filters and dielectric stacks
 - Overall system to model transmittivity by TMM method available.
 - MC based multivariate thickness variation of layer stack to model variability of transmission through stack has been implemented.
 - Furthermore the effect of layer roughness on transmittivity variation has been included into the benchmark

BENCHMARK B4 Dielectric Filter Sputter Dep.: Maps of relative thickness on substrate 60 $f_{lts} = 0.2$ 40 D.9 20 > í -20 0.6 -40 -60 0.7-300 -200 -100 0 100 200 300 400 × fts₀.3.dat 60 $f_{lts} = 0.3$ 40 D.9 20 35 -20 0.8 -40 -60 -400 0.7 -300 -200 -100 0 100 200 300 400 × fts₀.5.dat 60 f_lts = 0.5 40 20 0.9 > 0 -20 D.8 -40 -60 0.7 -300 -200 -100 100 200 300 ۵ 400 × © ams AG 2015 Page 31

CONCLUSIONS AND OUTLOOK

18 September, 2015

32/33

CONCLUSIONS & OUTLOOK

- A multi-hierarchical simulation system to model the variability behavior of high-performance analog circuits has been shown
- The vertical integration of multiple levels (process, device, circuit, system) enables optimization of key sources of variability
- The established causalities between system behavior and underlying processing variability will enable new much higher optimized integrated systems in future.

