

VARIABILITY-AWARE SPICE MODELLING AND CIRCUIT SIMULATION IN SUPERTHEME

Conference Sponsors:

OUTLINE

- 1. Introduction
- 2. SPICE Model Extraction
- 3. Combined Global and Local Simulation
- 4. Process Variation and Local Variation
- 5. Conclusion

INTRODUCTION

- Design at advanced technology nodes REQUIRES accurate SPICE Models.
 - Reduces design cost and time to market
 - Design Right first time
- Systematic/Global variability and local mismatch can no longer be treated in isolation.
 - Complex and correlated
- Need a holistic approach to modelling Global and Local variability and reliability effects
- Design Technology Co-Optimisation (DTCO)
- Software and modelling methologies which accurately capture the interplay between global and local variability and reliability.

INTRODUCTION - TOOLCHAIN

Full simulation tool chain

- Structure Manipulation/Translation
 - Monolith
- Device Simulation GARAND
 - DD, 3D Full Band MC , 1D Multi-subband MC
- Statistical SPICE Modelling
 - Mystic SPICE Model extraction
 - ModelGEN Advanced process and statistical aware SPICE Model generation technology
- **Circuit Simulation**
 - RandomSPICE Statistical Circuit Simulation Engine

SUPERTHEME

- Toolchain integration
 - Enigma Automation and Integration framework

18 September, 2015

SUPERTHEME 20NM MOSFET

VARIABILITY DECOMPOSITION

(Takeuchi, Nishida, Hiramoto, SISPAD 2009)

		Process	Environment	Temporal
	Global	<l<sub>g> and <w>, <layer thicknesses="">, <r>'s, <doping>, <t<sub>ox>, <v<sub>body></v<sub></t<sub></doping></r></layer></w></l<sub>	Operating temperature range, V _{DD} range	<nbti> and Hot electron shifts</nbti>
	Local	Line Edge Roughness (LER), Discrete doping, Discrete oxide thickness, R and V_{body} distributions	Self-heating, IR drops	Distribution of NBTI, Voltage noise, SOI V _{body} history effects, Oxide breakdown currents
	Across- chip	Line Width, due to pattern density effects	Thermal hot spots due to nonuniform power dissipation	Computational load dependent hot spots

(D. Frank, IBM)

- In general, variability can be decomposed into global process variation and local random variability.
- **Global Variability:** systematic, spatially correlated, long-range.
- Local Variability: random, no (weak) correlation, short-range.

COMPACT MODEL EXTRACTION WITH MYSTIC

8/24

- Extraction of nominal and statistical compact models
- Flexible extraction based on state machine workflow.
- Supports PCA and ModelGEN
- ModelGEN preserves correlations between non-normal parameter distributions

18 September, 2015

ESSCIRC ESSDERC

2015

HIERARCHICAL MODELLING METHODOLOGY

- Multi-stage extraction process
- Nominal Base Model
 - Standard SPICE Model Extraction
- GV Process Aware Model
 - Identify Group 1 Model Parameters
 - Define DoE Space
 - Fit to TCAD process splits or Si
- LV Statistical SPICE Model
 - Identify Group 2 Model parameters
 - Simulate variability under appropriate GV conditions

NOMINAL MODEL EXTRACTION

- Extract Base Model from TCAD using Mystic
- Full model extraction
- Uniform Doping
- Basis for variability model extraction
- Typically Target <2-3% error</p>
 - Needs to cover range of W and L
 - Range of Temperatures

ESSCIRC ESSDERC 2015

EXTENDED UNIFORM MODEL – GROUP 1

Group 1 Parameters - Subset of model parameters capture process/geometry variation

- 5×5 DoE space
- L_G=17, 20.25, 23.5, 26.75, 30
- W=24, 28.5, 33, 37.5, 42

STATISTICAL MODELS - GROUP 2

Group 2 Parameters - Subset of model parameters capture local variations and reliability

0.5

• RDD, σ=39.7mV

- 5×5 DoE space
- RDD, LER, MGG
- L_G=17, 20.25, 23.5, 26.75, 30

Campbell Millar

Accurately capture device variation including variations in SS and DIBL

18 September, 2015

Campbell Millar

LOCAL VARIATION RESPONSE SURFACES

GROUP 2 PARAMETER DISTRIBUTIONS

Distributions of SPICE model parameters for Group 2 are non-Gaussian and have complex correlations.

ESSCIRC ESSDERC 2015

MODELGEN

- Highly accurate Compact Model Generation
 - Captures non-Gaussian distributions
 - Parameter correlations
- Models combined impact of
 - Global Variation
 - Local variation
 - Reliability and ageing
- Uses response surface models for GV
- Model interpolators used for
 - BTI-induced ageing response.
 - Local statistical variability information.
- GSS RandomSPICE Statistical Circuit Simulation Engine

Campbell Millar

- ModelGEN response surface models
- Global PV has significant impact on SNM.

18 September, 2015

Campbell Millar

Simulated SNM using RandomSPICE and ModelGEN Library
Good control of PV is essential for yield.

SRAM: CELL LEAKAGE

- **I** SRAM Cell leakage critical for IOT applications
- In this case Lg variation dominates due to strong short channel effects
- I oloff changes due to Vt shift as well as L dependent σ Vt
- Variation span 3 orders of magnitude.

SUPERTHEME DEMONSTRATOR

- Variation in SRAM cell DC variation due to Litho random variation in Focus (F1) and Dose (D1)
- Horizontal lines need to be structured with LFLE double patterning. Simulated with Dr Litho.

RANDOM CD VARIATION

- Probability distribution of lengths of transistor T1 and T3
- Provided as input distribution to ModelGEN
- Simulated using Dr Litho from Fraunhofer IISB

DEVICE CHARACTERISTICS

SPICE simulated IV-characteristics of 2 corner transistors due to GV in L and W resulting from combined lithography step and statistical variability due to RDD, LER and MGG.

SRAM SNM: COMBINED GV AND LV

Example – SRAM SNM simulation in the presence of Combined Random GV and LV

Produces multi-modal output distribution

CONCLUSIONS

- Performed comprehensive simulation of 20nm Planar Bulk MOSFETs
- At advanced technology nodes correlations between Global and Local variability require careful consideration
- Developed process and statistical variability aware compact modelling methodology and ModelGEN SPICE model generator to enable true TCAD DTCO flow.

