

HIERARCHICAL MODELING OF RELIABILITY AND TIME DEPENDENT VARIABILITY IN THE MORV PROJECT

Conference Sponsors:

PROJECT MOTIVATION

- Scope: Timing analysis of complex circuits with aging effects
- State of the art: timing analysis performed using aged liberty files
- With this approach
 - Local, per-node parameters (activity, temperature, voltage), i.e., actual workloads, are not considered
 - As a consequence, timing analysis is pessimistic
- Objective : to develop timing flow aware of per-gate instance parameters
- Benefits :
 - Greater accuracy
 - Reduced pessimism

PROJECT BACKGROUND

ABSTRACTION HIERARCHY

ESSDERC 2015

OUTLINE

ESSCIRC ESSDERC 2015

BIAS AND TEMPERATURE STRESS: TYPICAL DURING FET OPERATION

Example: PFET V_{th} at **Negative** gate **Bias** (and typically at elevated

Temperature) starts shifting (shows Instability) → NBTI

Charging of preexisting and fabricated interface and oxide defects $\rightarrow \Delta V_{th}$ and $\Delta \mu$

DEEPLY-SCALED DEVICES: INDIVIDUAL EMISSION EVENTS VISIBLE IN NBTI RELAXATION TRACES

Kaczer et al., IRPS 2009

TRAP CONSTANTS V AND T DEPENDENT, DIFFERENT FOR EVERY TRAP

We need to know the **distributions of** $\tau_c(V,T)$ and $\tau_e(V,T)$

TRAPPING (CAPTURE) AND DETRAPPING (EMISSION): 2-STEP PROCESSES

ESSCIRC ESSDERC

2015

DESCRIPTION OF DEFECTS

Defects characterized by **distributed** properties:

- Energy
 - wrt band gap
 - Structural
- Position in oxide
- Impact on device
- Adopted approach:
- **Discrete defects** (e.g., Sdevice: discrete solution of Grasser, Kaczer *et al.*, IRPS 2009)
- Properties taken from above distributions

Advantages:

- Low level of abstraction
- Once properly set up, all trap-related effects come out "for free"

1.6

1.8

2.0

2.2

2.4

2.6

STRUCTURAL COMPONENT IN DISCRETE TRAPS APPROACH

ESSCIRC ESSDERC

Assume normal distributions of parabolic well parameters

MEASURED BTI DEPENDENCES MODELED AND REPRODUCED IN TCAD

Extended-MSM measurements + "brute force" fitting with ~7000 "bulk" (full Nonradiative Multi-Phonon, NMP) and "interface" (dual-well, DW) defects

EXAMPLE OF FITTING

V_G = -0.35V

 $V_{G} = -1.45V$

Courtesy G. Rzepa, TUW

RTN BEHAVIOR CAN BE REPRODUCED

SAME APPROACH ALLOWS CONNECTION TO BTI AND "CET MAPS" (LARGE DEVICES)

DEGRADATION DURING ARBITRARY $V_G(t)$ WAVEFORM CAN BE SIMULATED

• Trap occupation probability $P_c(t)$ calculated for every trap (possible for constant and periodic phases, see e.g. Rodopoulos *et al.*, TDMR 2014; Giering et al., IIRW2014)

- Only impact on *V*_{th} considered
- In small devices with a handful of defects, variability naturally reproduced

2015

DEEPLY-SCALED DEVICES CONTAIN ONLY A HANDFUL OF DEFECTS

In deeply-downscaled technologies, only a handful of stochastically-behaving defects will be present in each device

 ΔV_{th} due to charged defects will be different in each device \rightarrow time-dependent variability in addition to time-0 variability

INDIVIDUAL DEFECTS RESULT IN TIME-DEPENDENT VARIABILITY

- Individual devices contain Poisson-*distributed* number of defects
- Individual defects have exponentially distributed impact on device
- \rightarrow As opposed to large devices, the ΔV_{th} in deeply-scaled devices will be distributed
- Behavior naturally reproduced in the chosen discrete-defect approach

OUTLINE

ESSCIRC ESSDERC 2015

LIBRARY AND GATE LEVEL FLOW

- SoCFIT is IROC's internal chip-level reliability tool
- A cell <u>library</u> can be converted into per-cell type reliability models (RIIF)
- GLN of a <u>design</u> can be read, converted to <u>per-instance</u> **D**elay **R**equest **F**orms (DRF in RIIF) ²¹

EXAMPLE LIBRARY RIIF MODEL

```
Courtesy E. Costenaro, iROC
component AND2_X1;
  // Operating parameters
                                                                Generic RIIF model for a gate.
  parameter VCC = 1.0;
  parameter TEMP = 25;
  parameter A_INP_ACTIVITY; // activity on A-input
                                                                By default assume nominal VCC and
  parameter B_INP_ACTIVITY; // activity on B-input
  parameter Y_OUT_ACTIVITY; // activity on Y-input
                                                                  temperature.
  // Failure modes (radiation induced)
  fail_mode SET_25ps = 10 ; // FIT
                                                                Default activity factor is unknown.
  fail_mode SET_150ps = 1; // FIT
 //-----
                                                                BTI effect is modelled as incremental
 // Failure modes (EM induced)
  fail mode EM_Y_STUCK = 0.02; // per-gate EM FIT rate
                                                                  delay on each timing arc
  // Added delay due to BTI
  parameter A Y RISE INC DELAY = 0; // incr. delay (ps)
  parameter B_Y_FALL_INC_DELAY = 0; // incr. delay (ps)
endcomponent // AND2_X1
```

ESSCIRC

2015

REFINING LIBRARY GATES TO INSTANCES

- By simulating gate-level circuit, activity factors for each instance are extracted
- Each instance's unique characteristics form a DRF = **D**elay **R**equest **F**orm

ESSCIRC ESSDERC

2015

INSERTING DEGRADATION

- In practice, more elaborate spice-level preprocessing schemes are used to reduce runtimes
- In small devices with a handful of defects, variability is naturally generated

WORKLOAD-SPECIFIC AGING INFORMATION PROPAGATED INTO THE FLOW

- Simulating gate-level circuit, activity information for each <u>instance</u> is extracted
- Also includes generating per-instance voltage and temperature information (OFFIS)
- Each instance's unique characteristics form a
 - DRF = **D**elay **R**equest **F**orm (in RIIF format)

2015

ALSO CONSIDERED IN MORV

• Electromigration

. . .

• Hot-carrier degradation

Ceric et al., SISPAD 2015

Tyaginov et al., EDL, submitted

SUMMARY

EU project MoRV hierarchy has been reviewed, allowing inserting aging and variability into large-scale simulations

PARTNERS

Partially funded by EU Project

GLOBALFOUNDRIES

(intel)

SONY

Panasonic ideas for life

