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PROJECT MOTIVATION

• Scope: Timing analysis of complex circuits with aging effects

• State of the art: timing analysis performed using aged liberty files
• With this approach

• Local, per-node parameters (activity, temperature, voltage), i.e., actual workloads, 
are not considered

• As a consequence, timing analysis is pessimistic

• Objective : to develop timing flow aware of per-gate instance 
parameters

• Benefits :
• Greater accuracy
• Reduced pessimism
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PROJECT BACKGROUND
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ABSTRACTION HIERARCHY
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OUTLINE
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BIAS AND TEMPERATURE STRESS:  
TYPICAL DURING FET OPERATION

VDD
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Charging of preexisting and fabricated interface and oxide defects 
 ∆Vth and ∆μ
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Example: PFET Vth at Negative gate Bias (and typically at elevated 
Temperature) starts shifting (shows Instability)  NBTI
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DEEPLY-SCALED DEVICES: INDIVIDUAL EMISSION 
EVENTS VISIBLE IN NBTI RELAXATION TRACES
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TRAP CONSTANTS V AND T DEPENDENT, 
DIFFERENT FOR EVERY TRAP

We need to know the distributions of τc(V,T) and τe(V,T) 
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Structural 
relaxation + 
phonon 
emission

TRAPPING (CAPTURE) AND DETRAPPING
(EMISSION):  2-STEP PROCESSES
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DESCRIPTION OF DEFECTS

Defects characterized by distributed
properties:  
• Energy

• wrt band gap
• Structural 

• Position in oxide
• Impact on device

2.6

2.4

2.2

2.0

1.8

1.6

 
 

 
 

 
 

2.52.01.5
distance from substrate interface (nm)

1.0x1020

0.8

0.6

0.4

0.2

0.0

Trap density (eV
-1cm

-3)

 

2.6

2.4

2.2

2.0

1.8

1.6

 
 

 
 

 
 

2.52.01.5
distance from substrate interface (nm)

1.0x1020

0.8

0.6

0.4

0.2

0.0

Trap density (eV
-1cm

-3)

 

Adopted approach:
• Discrete defects (e.g., Sdevice: discrete solution of 

Grasser, Kaczer et al., IRPS 2009)
• Properties taken from above distributions

Degraeve et al.

ΔQ

Area2

Area1

∆vth
1-

CD
F

Advantages:
• Low level of abstraction
• Once properly set up, all trap-related effects come out 

“for free”
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STRUCTURAL COMPONENT IN DISCRETE 
TRAPS APPROACH 
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PRAGMATIC ASSUMPTION
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MEASURED BTI DEPENDENCES MODELED 
AND REPRODUCED IN TCAD
Extended-MSM measurements + “brute force” fitting with ~7000 “bulk” (full Non-
radiative Multi-Phonon, NMP) and  “interface” (dual-well, DW) defects

Courtesy G. Rzepa, TUW

Symbols: measurements
Lines: fits
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EXAMPLE OF FITTING

Active region channel
AR gate

Courtesy G. Rzepa, TUW

VG = -0.35V VG = -1.45V
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RTN BEHAVIOR CAN BE REPRODUCED
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SAME APPROACH ALLOWS CONNECTION TO BTI 
AND “CET MAPS” (LARGE DEVICES)
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Interface (DW)Bulk (NMP) Capture/Emission Time (CET) Map

Rzepa et al., SISPAD 2014
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DEGRADATION DURING ARBITRARY VG(t) 
WAVEFORM CAN BE SIMULATED 
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• Trap occupation probability Pc(t) calculated for every trap
(possible for constant and periodic phases, see e.g. Rodopoulos et al., TDMR  2014; Giering et al., IIRW2014)
• Only impact on Vth considered
• In small devices with a handful of defects, variability naturally reproduced
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DEEPLY-SCALED DEVICES CONTAIN ONLY 
A HANDFUL OF DEFECTS

In deeply-downscaled technologies, only a handful of 
stochastically-behaving defects will be present in each device

Not = 1012 cm-2 NT ~ 10 if device area = 10 x 100 nm2
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ΔVth due to charged defects will be different in each device        
 time-dependent variability in addition to time-0 variability
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INDIVIDUAL DEFECTS RESULT IN 
TIME-DEPENDENT VARIABILITY

• Individual devices contain Poisson-distributed number of defects
• Individual defects have exponentially distributed impact on device 
 As opposed to large devices, the ΔVth in deeply-scaled devices will be distributed
• Behavior naturally reproduced in the chosen discrete-defect approach

Large devices

Large Transistor
280 x 720 nm2

NT = 800 traps
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Small device
35 x 90 nm2

NT = 12 traps
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OUTLINE
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LIBRARY AND GATE LEVEL FLOW
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Application

• SoCFIT is IROC’s internal chip-level reliability tool
• A cell library can be converted into per-cell type reliability models (RIIF)
• GLN of a design can be read, converted to per-instance Delay Request Forms (DRF in RIIF)

Courtesy E. Costenaro, iROC
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EXAMPLE LIBRARY RIIF MODEL

component AND2_X1;
// Operating parameters
parameter VCC = 1.0;
parameter TEMP = 25;

parameter A_INP_ACTIVITY; // activity on A-input
parameter B_INP_ACTIVITY; // activity on B-input
parameter Y_OUT_ACTIVITY; // activity on Y-input

// Failure modes (radiation induced)
fail_mode SET_25ps = 10 ; // FIT 

…
fail_mode SET_150ps = 1; // FIT

//---------------------------------------------------
// Failure modes (EM induced)
fail_mode EM_Y_STUCK = 0.02; // per-gate EM FIT rate

//---------------------------------------------------
// Added delay due to BTI
parameter A_Y_RISE_INC_DELAY = 0;  // incr. delay (ps)
…
parameter B_Y_FALL_INC_DELAY = 0; // incr. delay (ps)

endcomponent // AND2_X1

• Generic RIIF model for a gate.

• By default assume nominal VCC and 
temperature.

• Default activity factor is unknown.

• BTI effect is modelled as incremental
delay on each timing arc

Courtesy E. Costenaro, iROC
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REFINING LIBRARY GATES TO INSTANCES

component U1 extends AND2_X1;
parameter VCC = 0.97;
parameter TEMP = 85;

parameter A_INP_ACTIVITY = 0.1;
parameter B_INP_ACTIVITY=0.1;
parameter Y_OUT_ACTIVITY=0.0;

endcomponent // U1

• By simulating gate-level circuit, activity factors for each instance are extracted
• Each instance’s unique characteristics form a DRF = Delay Request Form  

component U3 extends AND2_X1;
parameter VCC = 0.91;
parameter TEMP = 95;

parameter A_INP_ACTIVITY = 0.9;
parameter B_INP_ACTIVITY=0.9;
parameter Y_OUT_ACTIVITY= 0.9;

endcomponent // U3

Gate Level Circuit
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INSERTING DEGRADATION

RIIF
(DRF)

SPICE .sp

Trap 
Pc(t)

ΔVth

component

operating 
parameters

input activity

RIIF
(+Aging)

• In practice, more elaborate spice-level preprocessing schemes are used to reduce runtimes
• In small devices with a handful of defects, variability is naturally generated

Δt (delay)

Courtesy P. Debacker, imec

trap τ tables
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WORKLOAD-SPECIFIC AGING INFORMATION 
PROPAGATED INTO THE FLOW

• Simulating gate-level circuit, activity information for each instance is extracted

• Also includes generating per-instance voltage and temperature information (OFFIS)

• Each instance’s unique characteristics form a

• DRF = Delay Request Form (in RIIF format)

RIIF
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Original
SDF

Custom
Aged
SDF

IROC
SoCFIT

updated with 
incremental delays

Courtesy E. Costenaro, iROC
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ALSO CONSIDERED IN MORV

• Electromigration

• Hot-carrier degradation

...

Ceric et al., SISPAD 2015 Tyaginov et al., EDL, submitted
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SUMMARY

EU project MoRV hierarchy has been reviewed, allowing 
inserting aging and variability into large-scale simulations
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PARTNERS

Partially funded by EU Project
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