

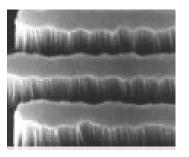
WORKSHOP "VARIABILITY – FROM EQUIPMENT TO CIRCUIT LEVEL"

Variability at all levels – A Challenge for Semiconductor Industry

Conference Sponsors:

ABSTRACT

- Presentation highlights Research and Industry effort to mitigate impact of multi-level Variability sources in order to enable design of high yield manufacturable circuits
- Variability scope is wide; samples of techniques among Process variability reduction, DFM, Electrical Characterization, Compact Statistical Modeling, Design methodology are shown for illustration.
- New challenges are identified



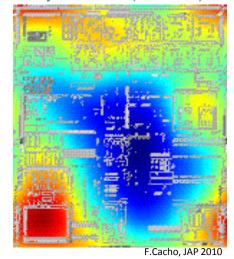
OUTLINE

- 1. Introduction: Variability sources
- 2. Design for Manufacturing
- 3. Global Process Variations (Interdie)
- 4. Local Across Chip Variations (Intradie, ACV)
- 5. Local Systematic Variations (Local Layout Effects, LLE)
- 6. Local Statistical Variations (Mismatch)
- 7. Circuit simulation requirements
- 8. Conclusion

Lot-to-Lot

Vafer-to-Wafer

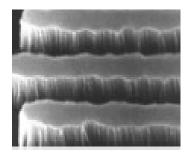
VARIABILITY SOURCES


Global Process(Interdie)

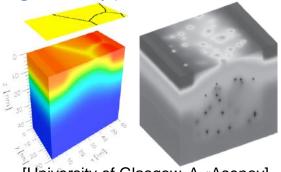
Across Chip (Intradie)

Lot-to-Lot Wafer-to-Wafer Die-toDie

[H.Tsuno, VLSI 2007] Systematic (mm-cm)



Local Layout Effect

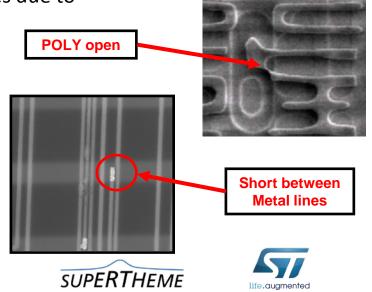

Systematic (0.1-1um)

(c) STI (a) Gate STI (b) Gate space width CESL Stress SW Stress SW Stress TED 400m TED 511 Stress STI Stress Local Random

Line edge roughness (nm)

[University of Glasgow, A .«Asenov]

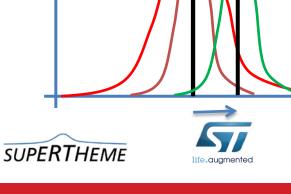
18 September, 2015


4/27

SUPERTHEME

DESIGN FOR MANUFACTURING (DFM)

- DFM is about Yield.
 - "DFM is a set of methodologies used to guide the design process so that product fabrication will have low cost, high conformance quality, low manufacturing rampup time and short time to market"
- **II** DFM rules and models allow to minimize yield losses due to
 - Systematic defects
 - Product/process ramp-up
 - As well as random defectivity
 - Volume production
- DFM is indeed about chip functional yield but not only...



eDFM

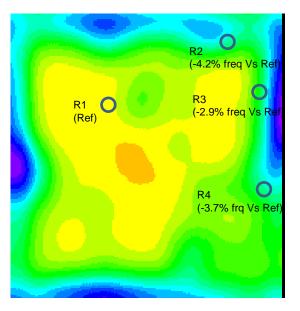
DFM VS PERFORMANCE VARIABILITY

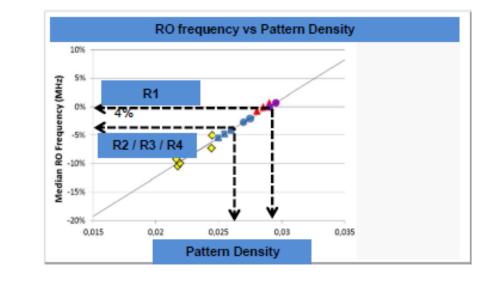
- At nanometer technologies, process variability has become one of leading causes of chip yield loss and delayed schedules
 - designers must be aware of how complex manufacturing steps lead to device and interconnects performance variability
 - variability is to be accounted for in various design operation modes, power states/domains, leading to more complex and longer design cycles
- "electrical DFM" (eDFM) rules to
 - Reduce impact of process variability
 - Reduction of circuit performance spread
 - More dice with maximum performances
 - Verify layout design vs accurate simulation validity domain
 - Minimize discrepancy bw simulated /measured circuit performance

ELECTRICAL DFM VS PERFORMANCE VARIABILITY

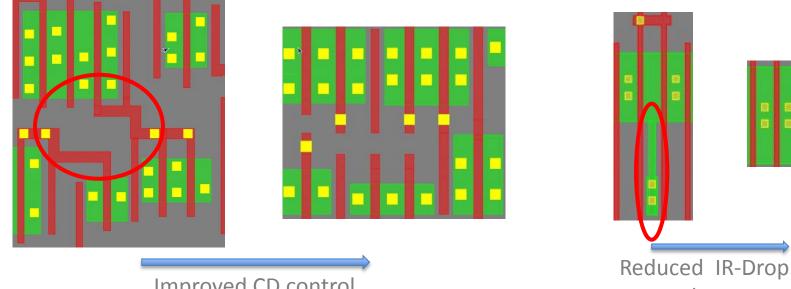
Improved channel W control Spice model compliance (Nominal + Variations)

Small scale eDFM example. eDFM minimizes impact of process variability on circuit performance variations and maximize CAD/Silicon correlation


18 September, 2015



ELECTRICAL DFM VS PERFORMANCE VARIABILITY

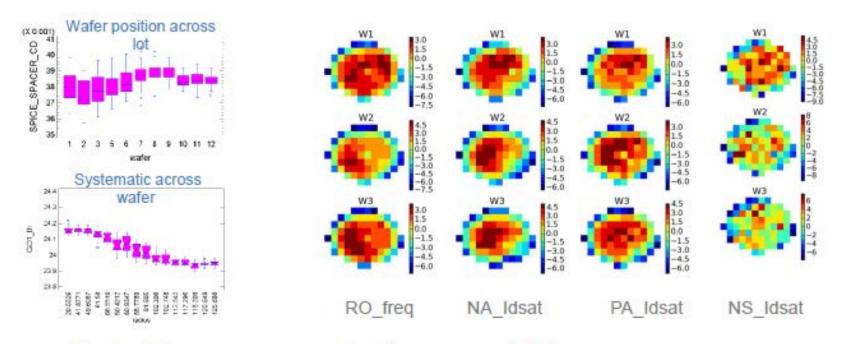

SUPERTHEME

- Large scale eDFM example
 - Large variations in Pattern density lead to systematic acrosschip variations (ACV)
- Can be mitigated by layout regularity
 - Cell level (regular gate pitch, limited set of geometries,...)
 - Chip level (density/gradient design rules, smart dummy devices,...)

ELECTRICAL DFM VS CAD ACCURACY

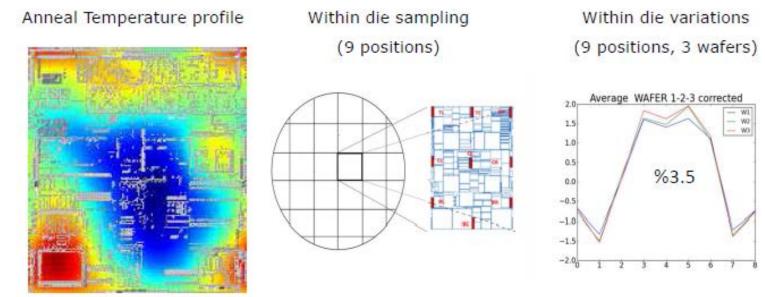
Improved CD control Spice model accuracy PEX tool accuracy

Need to verify layout design vs accurate simulation validity domain


- For specific layout situation simulation may not be fully accurate
- Allowed by DRC, nevertheless can be restricted by eDFM rules

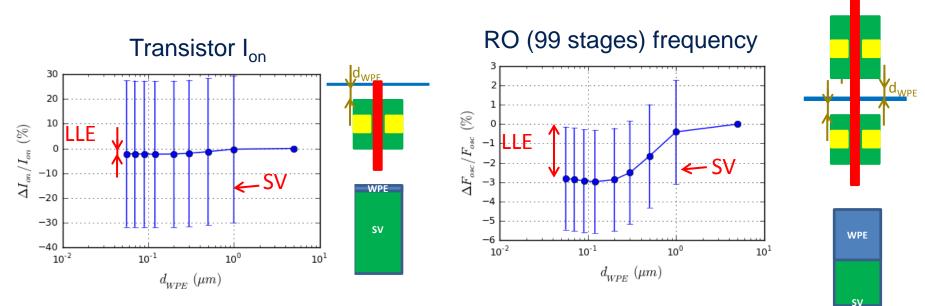
GLOBAL PROCESS VARIABILITY

Intrawafer die/die variations tend to dominate Global variations
 Electrical impact similar for RO delays and Mosfet currents; can be put in evidence with properly design structures [GC Castaneda ICMTS 2012]



ACROSS CHIP VARIATIONS

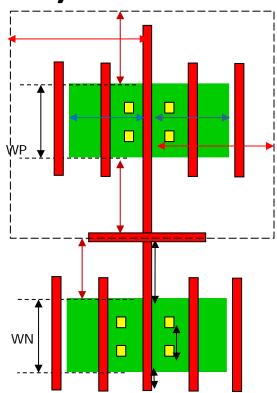
Anneal Temperature profile


[F.Cacho, JAP 2010]

ACV may originate from pattern density gradient within chip
 Experimental evidence with ROs , thanks to SV averaging effect
 Mitigated with smart dummy patterns to reduce density gradients
 18 September, 2015
 11/27

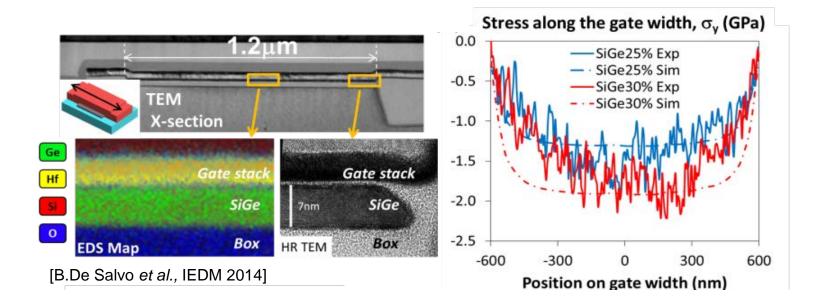
LOCAL VARIATIONS: SYSTEMATIC VS STATISTICAL

Transistor level : random variations (SV) dominant for devices at critical dimensions
 Circuit level: random variations averaged, and systematic variations (LLE) revealed
 LLE methodology: characterization, compact modeling, post-layout extraction tool



LOCAL SYSTEMATIC VARIATIONS (LLE)

Layout effect	Root cause	Critical distance	Electrical Parameters	Instance Layout par.
Well Proximity (WPE)	Deep Well implants	>1um	Vt, Mu, Kb	3
LOD/STI	STI Stress S/D SiGe (P) SiGe channel (N)	1um	Vt, Mu	> ~6
Gate Spacing Nb of Fingers	CESL/DSL Stressor	~1 um	Vt, Mu	>~6
S/D Contacts Nb & Position	CESL/DSL Stressor	1um	Vt, Mu	>~4
Distance to Stress Liner	DSL	1um	Vt, Mu	>~4
Active corner	Litho & Etch rounding	Local	Weff	~4
Gate corner or endcap	Litho & Etch rounding	Local	Leff	~4


- LLE are technology dependent
- For each W/L instance, a bunch of layout dependent effects interplay
- **I** Risk of inaccurate design reduced with Layout regularity and LLE model accuracy

LLE STUDY CASE (UTBB FDSOI SI-GE CHANNEL)

Ge induces compressive strain in SOI film
 Strain tends to relax at the edges of the film

2000

LLE STUDY CASE (UTBB FDSOI SI-GE CHANNEL)

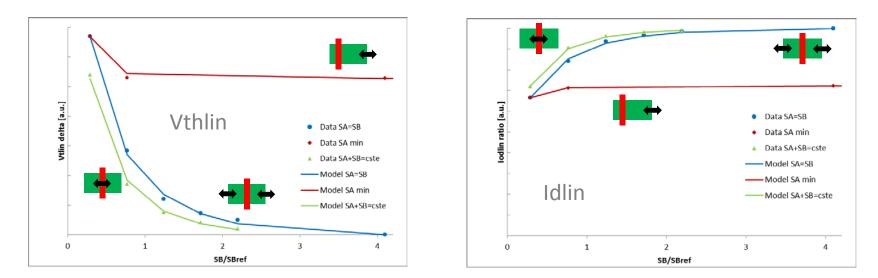
$$P(x, L_{act}) = P_{full \ strain} + \Delta P \times g(x, L_{act})$$

$$\Delta P = P_{edge} - P_{full \ strain}$$

$$g(x, L_{act}) = 1 - \left[\frac{2}{(1 - e^{-x/\lambda})^{-\alpha} + (1 - e^{(x - L_{act})/\lambda})^{-\alpha}}\right]^{1/\alpha} [\text{T.Poiroux \& al., MOSAK 2015 Q1]}$$

$$g(x, L_{act}) = 1 - \left[\frac{2}{(1 - e^{-x/\lambda})^{-\alpha} + (1 - e^{(x - L_{act})/\lambda})^{-\alpha}}\right]^{1/\alpha} [\text{T.Poiroux \& al., MOSAK 2015 Q1]}$$

Compact model formulation for Electrical Parameters P inspired from Stress profile Impacts on Vfb, DIBL, Mobility, and Velocity saturation accounted for in UTSOI2 model

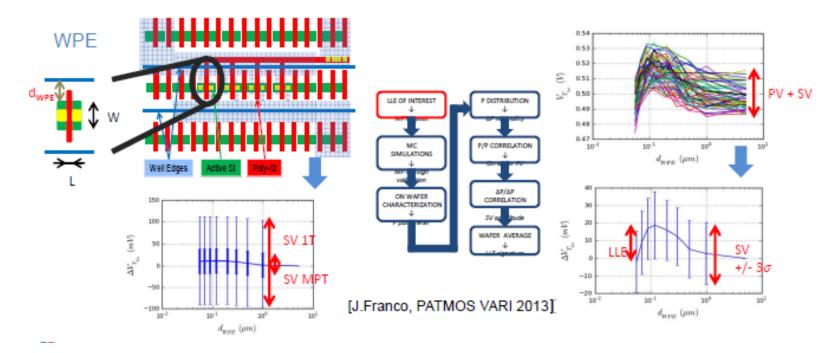


11

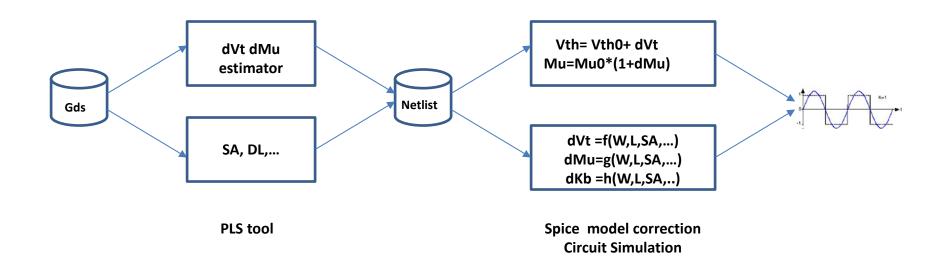
LLE STUDY CASE (UTBB FDSOI SI-GE CHANNEL)

$$P(SA,SB) = P(SA_{ref},SB_{ref}) + \Delta P\left(g(SA,SB) - g(SA_{ref},SB_{ref})\right)$$

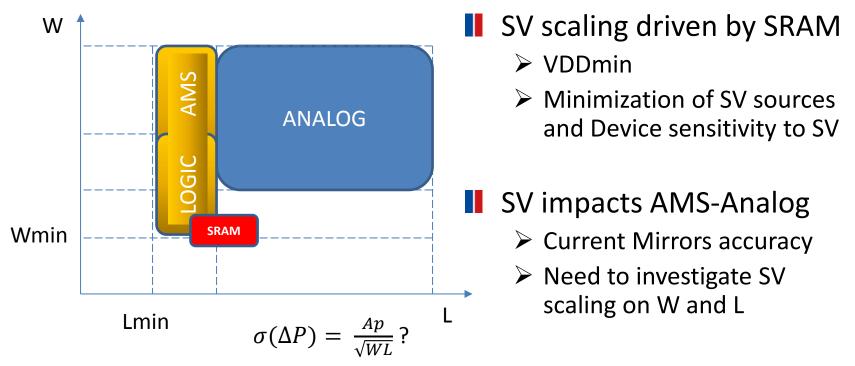
[T.Poiroux & al., MOSAK 2015 Q1]


SA/SB effect model validation

LLE CHARACTERIZATION METHODOLOGY


Characterization methodology revisited for transistor LLETest structure, data processing in presence of PV and SV, LLE signature

LLE DESIGN FLOW


LLE simulation flow: implementation shared bw Post-Layout extraction and Compact Spice modeling

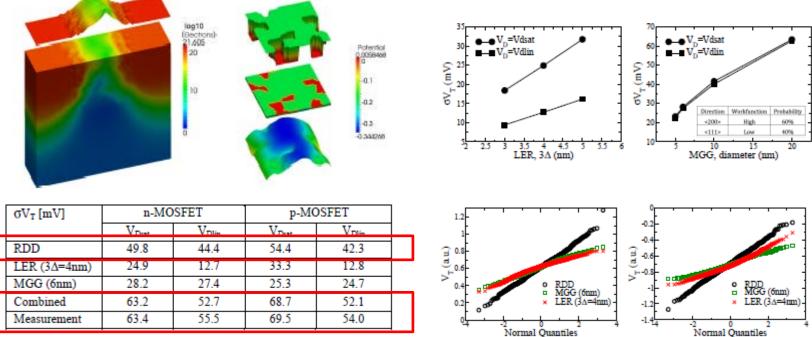
LOCAL STATISTICAL VARIATIONS (SV)

Pelgrom model is nice metric, but does scaling apply throughout Design Space?
Which sources are present and which electrical parameters are impacted?



life.auamenteo

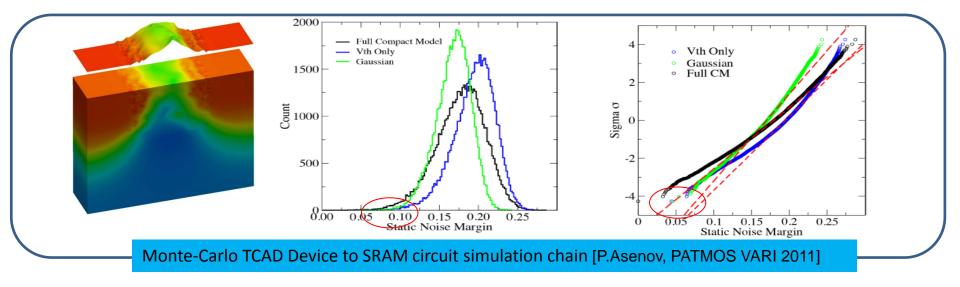
LOCAL STATISTICAL VARIATIONS: BULK PLANAR CMOS


45nm devices exhibit AVT degradation for large L
 Model improved for AMS circuit design assuming Channel doping gradient

SUPERTHEME

life.augmented

LOCAL STATISTICAL VARIATIONS: BULK PLANAR CMOS

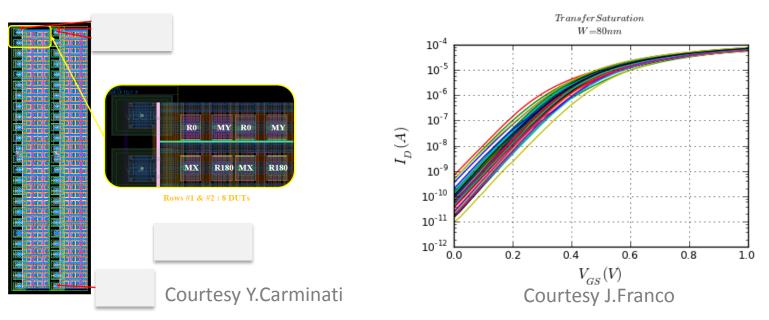

[X.Wang &al, Univ. Glasgow, EDL 2011]

SV sources well identified and contributions quantified (RDD dominant)
 SV models validated for 32nm devices (ENIAC Modern project support)

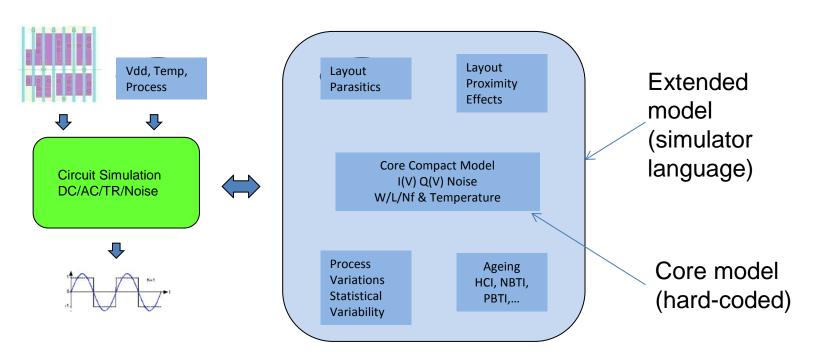
SUPERTHEME

LOCAL STATISTICAL VARIATIONS: SRAM CASE

- I Importance of accurate SV models has been demonstrated
- In particular, assumption of Vth-only and Gaussian-only PDF distribution may fail
- **Full statistical compact models for accurate estimates of SRAM SNM**


18 September, 2015

LOCAL STATISTICAL VARIATIONS: CHARACTERIZATION


- Characterization methodology revisited
- **II** Transistor pairs suited for standard mismatch figures characterization
- Addressable transistor arrays suited for statistical I(V) characterization (Vth, DIBL, SS, Idsat, Ioff,...) and statistical compact Spice model extraction

CIRCUIT SIMULATION REQUIREMENTS

- Accurate core models vs Bias, Geometry, Temperature
- Accurate model extensions for predictivity of PV, SV, LLE, and Ageing impact
- Efficient Circuit simulation methods and integrated design flow

SUPERTHEME

CONCLUSION

- Variability has multiple contributions of different nature from technology and device.
- Those effects must be addressed concurrently by dedicated developments in Technology, Characterization, Modeling, CAD tools, and Circuit design.
- Effective collaboration between those players is must-have to enable emergence of high volume high yield IC products in time with respect to market needs.
- Comprehensive understanding of variability at all-levels, variability reduction techniques, model accuracy, predictivity of statistical simulation tools, and design flow efficiency, are key.

REFERENCES

[1] B. De Salvo *et al.*, "A mobility enhancement strategy for sub-14nm power-efficient FDSOI technologies", IEDM 2014

[2] T. Poiroux *et al.*, "UTSOI2: A Complete Physical Compact Model for UTBB and Independent Double Gate MOSFETs", IEDM 2013

[3] G.Castaneda *et al.*, "Test Structures for Interdie Variations Monitoring in Presence of Statistical Random Variability ", ICMTS 2012

[4] J.Franco *et al.,* "Characterization Methodology for MOSFET Local Systematic Variability in Presence of Statistical Variability ", JOLPE Journal, 2014, Vol10 no1

[5] P.Asenov *et al.,* "Introducing Statistical Variability into SRAM SNM Simulations – a Comprehensive Study ", VARI workshop, 2011

[6] C.Mezzomo *et al.,* "Modeling local electrical fluctuations in 45 nm heavily pocket-implanted bulk MOSFET", SSE Journal, 2010

[7] T. Poiroux *et al.,* "New version of Leti-UTSOI2 featuring further improved predictability, and a new stress model for FDSOI technology", MOSAK Workshop, March 2015

[8] F.Cacho *et al.,* " Simulation of pattern effect induced by millisecond annealing used in advanced metal-oxide-semiconductor technologies ". Journal of Applied Physics, 2010

[9] X.Wang *et al.,* " Simulation Study of Dominant Statistical Variability Sources in 32-nm High-κ/Metal Gate CMOS ", IEEE EDL, May 2012

ACKNOWLEDGMENT

- J.Franco, GC. Castaneda, C.Mezzomo (ST)
- G.Ghibaudo (IMEP), A.Asenov (UNGL)
- C.Millar, P.Asenov (GSS)
- T.Poiroux (LETI)
- JC.Marin, P.Scheer, G.Gouget (ST)
- Y.Carminati, B.Lhomme, B.Borot (ST)

