

VARIABILITY-AWARE DEVICE SIMULATION IN SUPERTHEME

Conference Sponsors:

OUTLINE

- 1. Introduction
- 2. Modeling Methodology for variability
- 3. Interplay of Process and Statistical Variability
- 4. Conclusions

OUTLINE

Introduction 1.

- Modeling Methodology for variability 2.
- Interplay of Process and Statistical Variability 3.
- 4. Conclusions

The semiconductor industry is facing atomic scale limitations

Statistical variability is one of the major challenges associated with scaling

Variability results in higher parametric yield loss

Variability Decomposition

(Takeuchi, Nishida, Hiramoto, SISPAD 2009)

(D. Frank, IBM)

- In general, the variability can be decomposed into global process variation and local random variability.
- PV: systematic, spatially correlated, long-range.
- SV: random, no (weak) correlation, short-range.

Variability Decomposition

Saturation in performance and increasing ESSCIRC ESSDERC variability drives the CMOS innovations 2015 2003 2005 2007 2009 2011 <u>90 nm</u> <u>65 nm</u> 45 nm <u>32 nm</u> 22 nm SiGe SiGe High-SiGe SiGe Silicon 2nd Gen. 2nd Gen. Invented Invented First to SiGe SiGe Gate-Last Gate-Last Implement Strained Silicon Strained Silicon High-k High-k Tri-Gate Metal Gate Metal Gate M Bohr (Intel) Strained Silicon High-k Metal Gate Tri-Gate

New transistor architectures improve performance and can reduce statistical variability

OUTLINE

- 1. Introduction
- 2. Modeling Methodology for variability
- 3. Interplay of Process and Statistical Variability
- 4. Conclusions

SUPERTHEME

SUPERTHEME - CONTEXT

IIS

Process Variation - Systematic

• Lithography induced variations

ESSCIRC ESSDERC

2015

• Stress induced variations

• Well Proximity effects

Extensively addressed in previous talks ! 11/40

Main sources of Statistical Variability

RDD in Simulation (1)- Atomistic Process Simulation

RDD in Simulation (2)- Poisson Distribution + realistic doping profile

- Cover the simulation domain with the Si lattice
- □ Visit each lattice site and generate dopant with probability $p_i = N(x_i, y_i, z_i)\Delta V$ where $\Delta V = a_{Si}^3/8$ is the volume associated with each Si atom
- Assign the dopant to the surrounding grid nodes using cloud in a cell approach

LER in Simulation – Origins

T. Brunner, ICP 2003

- Fluctuation in the total dose due to light quantisation.
- Fluctuation in photon absorption position.
- Nanoscale non-uniformities in resist composition.
- Statistical variation in the acidcatalysed de-protection.
- Statistical effects in polymer chain dissolution

LER in Simulation – Implementation

A complex array of N elements is generated according to the power spectrum of the chosen autocorrelation function.

ESSCIRC ESSDERC

2015

Gaussian

$$S_G(k) = \sqrt{\pi} \Delta^2 \Lambda e^{-\frac{k^2 \Lambda^2}{4}}$$

Exponential $S_{E}(k) = \frac{2\Delta^{2}\Lambda}{1 + k^{2}\Lambda^{2}}$ $k = i \frac{2\pi}{N \, dx}$ The phase of the elements

□ The phase of the elements is chosen randomly. However only (N/2-2) elements are independent.

A. Asenov et al. 2003

MGG in Simulation - Origins

 $\Phi_{111}(L) > \Phi_{100}(M) > \Phi_{110}(H)$

Different surface density at different orientations

17/40

H. Dadgour et al.

ESSCIRC ESSDERC MGG in Simulation – Implementation 2015 1. 3D Voronoi Geometric Tesselation A.T. Putra, ISDRS 2007 2. Use of large interdigitise template A. Brown 18/40

OUTLINE

- 1. Introduction
- 2. Modeling Methodology for variability
- 3. Interplay of Process and Statistical Variability
- 4. Conclusions

SUPERTHEME

THE GSS SIMULATION TOOLCHAIN

Full simulation tool chain

- Structure Manipulation/Translation
 - Monolith
- Device Simulation GARAND
 - DD, 3D Full Band MC , 1D Multi-subband MC
- Statistical SPICE Modelling
 - Mystic SPICE Model extraction
 - ModelGEN Advanced process and statistical aware SPICE Model generation technology
- **Circuit Simulation**
 - RandomSPICE Statistical Circuit Simulation Engine
- Toolchain integration
 - Enigma Automation and Integration framework

SUPERTHEME 20NM MOSFET

Nominal Device

Design of Experiments - Interplay between PROCESS and STATISTICAL VARIABILITY 2015

RDD, LER, MGG
L_G=17, 20.25, 23.5, 26.75, 30
W=24, 28.5, 33, 37.5, 42
5 × 5 DoE space

PROCESS VARIABILITY - NMOS

PROCESS VARIABILITY - PMOS

PROCESS VARIABILITY - Temperature

Temperature Variations are treated in the DoE in the same way as Process Variations

STATISTICAL VARIABILITY

- Nominal L_g=23.5nm, W=33nm
- Realistic MOSFET structures: STI, gate stack
- RDD, LER, MGG variability on top of PROCESS variations

STATISTICAL VARIABILITY

STATISTICAL VARIABILITY - NMOS

STATISTICAL VARIABILITY - PMOS

Remarks on the INTERPLAY of PROCESS and STATISTICAL VARIABILITY

Process Variations DO NOT only induce shifts in the AVERAGE Performance BUT they also change the sensitivity to STATISTICAL Dispersion

Remarks on the INTERPLAY of PROCESS and STATISTICAL VARIABILITY

Process Variations DO NOT only induce shifts in the AVERAGE Performance BUT they also change the sensitivity to STATISTICAL Dispersion

31/35

0.35

ρ_{TCAD}: -0.098

PCM: 0.096

DIBL

40 60 80 100

SS

-14 -13 -12 -11

0.25 0.35 0.45

Process Variations DO NOT only induce shifts in the AVERAGE Performance BUT they also change the correlation between FOMs $\frac{32}{35}$

HIERARCHICAL VARIABILITY AWARE SIMULATION METHODOLOGY

DEVICE to CIRCUIT Hierarchical Simulation

TCAD-based Design-Technology Co-Optimization (DTCO)

OUTLINE

- 1. Introduction
- 2. Modeling Methodology for variability
- 3. Interplay of Process and Statistical Variability
- 4. Conclusions

SUPERTHEME

CONCLUSIONS

- VARIABILITY is a maker or breaker of advanced MOSFET technology.
- Accounting for both PROCESS and STATISTICAL variability (and their interplay) is mandatory for optimizing design margins and developing predictive early-stage PDKs.
- A fully integrated and hierarchical SIMULATION methodology must be adopted to enable a cost-effective DTCO and to shrink time-to-market.

SUPERTHEN